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Abstract
Research has long shown that spreadsheet developers are 96% to 99% accurate when they enter information into spreadsheet cells. For large spreadsheets, unfortunately, a cell error rate of 1% to 6% will almost certainly lead to incorrect results. Can cell error rates (CERs) really be this high? General human error research has shown that when humans do simple but nontrivial cognitive tasks, they inevitably have comparable error rates. The problem is that human cognitive mechanisms have evolved to “gamble” in a way that will be correct nearly all of the time but that will fail a few percent of the time. Furthermore, our brain hides its inaccuracy from us, leaving us to believe strongly in the correctness of our work despite the presence of errors. This paper looks at cognitive science aspects of spreadsheet error commission. A subsequent paper will look at spreadsheet error detection.
1. Spreadsheets: Important and Risky
Spreadsheet programs are used in almost every corner of every organization [17]. It is not uncommon to find spreadsheets with a thousand or even ten thousand unique formulas [11, 23]. Spreadsheets are even used heavily in heavily regulated areas, such as financial reporting [32]. Despite the widespread use of spreadsheets and the risks and opportunities they pose for organizations, spreadsheets are like dark matter in physics—invisible to IT professionals, corporate managers, and information systems (IS) researchers.

The most-studied aspect of spreadsheet modeling has been development errors. Research to date has given us a very disquieting picture of the frequency with which spreadsheet developers make errors. For example, Table 1summarizes key results from a number of inspections of real-world operational spreadsheets. Powell, Baker, and Lawson [36] argue that this is the best source of data on spreadsheet errors because these spreadsheets are “the real thing.” The table shows that errors were found in a large majority of the inspected spreadsheets. This is even true for the studies shown in boldface, which only reported errors if they were serious, such as a spreadsheet that would produce a material accounting error or that might cause an incorrect decision to be made.

	Authors
	SSs
	Percent with Errors
	Cell Error Rate

	Hicks (1995)
	1
	100%
	1.2%

	Coopers & Lybrand (1997)
	23
	91%
	NR

	KPMG (1998)
	22
	91%
	NR

	Lukasic (1998)
	2
	100%
	2.2%,
2.5%

	Butler (2000)
	7
	86%
	

	Clermont, Hanin, & Mittermeier (2002)
	3
	100%
	2.7%

	Lawrence & Lee (2001)
	30
	100%
	

	Powell, Baker & Lawson (2008a)
	50
	86%
	0.9%

	Powell, Baker & Lawson (2008b)
	25
	44%
	NR

	After 1995
	163
	84%
	


Table 1: Spreadsheet Error Rates in Inspections of Real-World Operation Spreadsheets
Table 2 summarizes data from another research source—laboratory experiments in which subjects developed spreadsheets from a word problem. Again, most studies found errors in most spreadsheets. The rate of incorrect spreadsheets is far lower than that shown in Table 1, but then the spreadsheets developed in the experiments were far smaller than typical industry spreadsheets.

	Study
	SSs
	Percent Incorrect
	CER

	Brown and Gould [1987]
	27
	63%
	 

	Hassinen [1988]
	92
	55%
	4.3%

	Panko & Halverson [1997]
	 
	 
	 

	Working alone
	42
	79%
	5.6%

	Teo & Tan [1997]
	168
	42%
	2.1%

	Panko & Sprague [1998]
	 
	 
	 

	MBA students  < 150 hrs
	26
	35%
	2.1%

	MBA students >250 hrs
	17
	24%
	1.1%

	Kreie [2002] posttest
	73
	52%
	2.8%

	Panko & Halverson [2001]
	 
	 
	 

	Working alone
	35
	86%
	4.6%

	Irons [2003]
	 
	 
	 

	Task 1
	11
	18%
	1.7%

	Task 2 (4 did not finish)
	7
	71%
	


Table 2: Spreadsheet Error Rates in Spreadsheet Development Experiments
In human error research, there typically is a focus on the base error rate (BER), which is the percentage of activities of a particular type that are incorrect. These activities might be manufacturing computer boards, writing lines of code, or entering content into a spreadsheet cell. BERs are long-term averages across many people. Individuals might have somewhat different BERs, and BERs cannot be used to predict the number of errors in specific spreadsheets with any precision. Still, BERs are useful in quality engineering because they give rough guidelines on how many errors to inspect for a given number of activities.

For spreadsheets, the usual base error rate measure is the cell error rate (CER), which is the percentage of all cells that contain errors. CERs may be expressed on different denominators. For example, CERF is the percentage of formula cells that are incorrect, CERV is the percentage of incorrect value cells (numbers or formulas), and CERA is the percentage of all cells that contain errors (including label cells) [Panko and Aurigemma, 2010].

In Table 1, studies that have reported cell error rates have typically reported CERs of about 1% to 3%. Inspections never catch all errors, so the true CERs in these spreadsheets were probably substantially higher. Table 3 shows results from laboratory experiments, in which correct solutions are usually known, so that all or nearly all errors are caught. In this table, CERs are about 1% to 6%.

These are very small error rates. They mean that developers are correct are correct 95% to 99% of the time when they enter a number or formula into a spreadsheets. However, spreadsheets have many numbers and formulas and therefore have many chains of calculations. If the CER is 98% and there is a calculation chain of a mere five cells, the probability of the spreadsheet being correct is 0.98*0.98*0.98*0.98*0.98 or 0.90. In other words, a cell error rate of only 2% produces a 10% chance of there being an error. If large spreadsheets have hundreds of cells in calculation chains or even thousands of cells in calculation chains, then the probability of an error must be very high.

According to a story that is almost certainly apocryphal, when Einstein was asked to name the most powerful force in nature, he said, “compound interest.” Humans have a difficult time understanding how tiny error rates compound over many steps to produce a near certainty of error. Figure 1 shows the importance of error rate compounding for spreadsheet error rates (or any other type of error rates). Here, cell error rates (CERs) vary from an incredibly tiny 0.001% (an error rate of .00001) to 10%. The number of cascade steps are 10, 100, and 1,000. Note that 100 steps might be a single 100-step cascade, 10 cascades of 10 steps, 25 cascades of 4 steps, and so forth.
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Figure 1: Probability of an error for different cell error rates and calculation steps
2. Human Error Rates
The basic lesson of Figure 1 is that cell error rates of about 0.5% or higher are in a proverbial “red zone” of unacceptability because they will lead to a high rate of bottom-line spreadsheet errors for many spreadsheets if not most spreadsheets (even those of a few dozen unique formula and number cells). Yet these are exactly the CERs seen across a large number of studies.
Are the cell error rates discussed in the last section plausible? A good way to answer that question is to consider base error rates found in other areas of general human error research (HER). Spreadsheet error research only dates back to the 1980s and is very small in total. In contrast human error research has been conducted for more than a hundred years. HER has been conducted in a wide variety of human cognitive domains, including programming, writing, mathematics, industrial accidents, and aircraft accidents, to name just a few.

In the 1980s, HER researchers in different fields began to compare their findings. This led to the realization that human error rates are very similar for human cognitive activities of comparable complexity across human error fields. Table 3 shows base error rates for activities that are simple but nontrivial. Note that they range from about 0.6% to about 10%. In other words the CERs seen in Table 1 and Table 2are certainly consistent with the findings of other areas of human error research. Although lower BERs are found in the HER literature, they are only found for such trivial activities cognitive as selecting of the wrong switch in a pair of switches that are dissimilar in shape (0.1%) [19].

	Description
	Base Error Rate
	Study

	Error reading a chart recorder, per read
	0.6%
	Swain & Guttman [1983]

	Error reading a graph. Per read.
	1%
	Swain & Guttman [1983]

	Simple action that requires care, per action
	1%
	Kirwan [1994]

	Faults per line of software code. National Software Quality Experiment
	2.0%
	O'Neill [1994]

	Faults per line of software code. 2,500 inspections at Cisco Systems
	3.2%
	Cohen [2006]

	Faults per line of software code. Major telecommunications project at ATT. 2.5 million lines of code over 8 software releases
	3.7%
	Graden & Horsley [1986]

	Put 10 digits into a calculator
	5%
	Smith [2005]

	Dial 10 digits
	6%
	Smith [2005]

	Making entries in an aircraft flight management system. Per keystroke.
	10%
	Potter [1995]


Table 3: Base error rates (BERs) for nontrivial cognitive activities
In fact, if spreadsheet error rates had been lower than those in Table 3, the spreadsheet results would have been suspect. One might even say that spreadsheet error research has been largely unnecessary because we could have looked at studies like those in Table 3 to come up with roughly the same conclusions. In a sense, spreadsheet error research has merely confirmed that general human error research results apply to spreadsheet error research.

In Table 3, the results of three major software development error studies are highlighted. Each row is based on a large number of inspections of software modules. In general, spreadsheet research indicates that spreadsheet and software error rates and even error types are very similar. This suggests that we should consider software engineering findings when we consider spreadsheet engineering recommendations.

3. Cognitive Science and Errors
The subtitle of this paper is “Why Thinking is Bad.” This echoes an earlier study by the author asserting that thinking is bad in the sense that every time we think, there is a small probability that we will make an error. As Reason [38] noted, the very same cognitive mechanisms that permit us to work so effectively nearly all the time also cause us to make occasional errors. The Why in the subtitle of this paper indicates that we will explore some of the cognitive mechanisms that lead to occasional errors.

When Miller [24] reported that people could only remember about 7 plus or minus 2 things, this suggested that there was a specific cognitive mechanism involved and that this mechanism had specific limits. The regularity that human error research has found in base error rates across fields also suggests that specific cognitive mechanisms are involved in a broad array of thinking mechanisms and that these mechanisms are good but not perfect. We are a long way from understanding how the brain works and how it is able to perform as well as it does. However, cognitive science has learned a great deal about neurological functioning. The analysis of errors is a strong part of cognitive psychology because the functioning of the brain is brought into focus by looking at how and when it fails [3,4].
3.1 The Human Brain
The human brain is a marvel of complexity. It has about 100 billion neurons (brain cells). Each connects directly to about a thousand other neurons [7,20,30]. When one neuron fires, it causes other neurons to fire in response, creating cascades of complex associations in the brain. These associations direct how we respond to the world around us—how we think.

What is even more impressive is how efficient the brain is. The human resting metabolism requires about 100 watts of energy. Although our three-pound the brain accounts for a tiny fraction of our body weight, it consumes only about 20 of these watts [25]. This is a very limited amount of energy. We are all literally “dim bulbs” when it comes to brain power. With this small amount of energy, our brains must do what supercomputers cannot do despite kilowatts of power. As we will see, however, it does so by taking shortcuts that do not always work.

Our “wetware” has other limitations as well. While computers have clock cycles of billionths of a second, neurons can only fire every one or two thousandths of a second [25]. This speed limit exists largely because the connections (synapses) between neural transmitters and receptors are chemical rather than electrical [25]. In addition, our neurons are so small that signals are noisy, and whether or not they fire is probabilistic rather than deterministic [25].

We cannot even experience the world in real time. It takes visual and other sensory signals about 7 ms to reach our brains, and it takes another 300 to 700 ms to recognize our signal before we can act [1]. We literally see the world as it was a half second or so ago, and yet must make real-time decisions. This time delay, however, is hidden from us, as are many other aspects of human cognition.

When human engineers are confronted with limited power and imperfect technology, they accept trade-offs. Often, they design things to work very well most of the time but to fail occasionally. (The alternative is to work in a poor way all of the time.) Evolution seems to have done the same with our brain and general nervous system. For example, our eyes have a field of vision of about 200 degrees [16]. Yet, we can only see clearly over a tiny fraction of our field of vision. In the back of the eye is a small 1.5 to 2 mm area called the fovea and a smaller area within the fovea, the fovea centralis, which is about 0.5 mm in diameter [14,29]. The fovea, and to an even greater degree, the fovea centralis, determine what we can see with high resolution. The fovea allows us to focus over about a five degree angle, and the fovea centralis gives us strong color resolution over an angle of only 1.5 degrees. To see what a narrow focus this is, extend your arm in front of you and hold up your thumb. The fovea centralis can give high resolution vision only for an area about the size of your thumb nail [12,29]. The density of optical receptors and nerves is far less over the rest of the retina, and you only have low-resolution vision over the 200 degrees of your visual field. It is not surprising, then, that roughly half of the brain’s visual cortical is dedicated to processing signals from the fovea [22].Yet the world around you does not seem blurry except in a narrow cone of vision. This is another case of our cognitive system hiding the reality of the world from us.

When you look at a page in a book, or if you are reading on a computer screen, you can only focus precisely on a handful of letters. To cope with this limitation, your eyes jump constantly when you read so that what you read remains in focus. Each jump is called a saccade. Ciuffreda, et al. [9] reported that there typically are 50 to 100 saccades for every 100 words we read. Each typically lasts 150 to 375 ms. We also have constant saccades when we look in the distance because most of our visual field has very low resolution. Our eyes make about 100,000 saccades every day [25].

Saccades may seem odd, but they make a great deal of sense from an engineering point of view. Our brain only has so many optic nerves it can support, and instead of getting mediocre resolution vision over a wide range of angles, it makes more sense to give us extremely high resolution over small area of focus and give us the ability to jump rapidly from focus point to focus point. However, the fovea also illustrates two common problems with human cognition. First, the fact that most of our vision has low resolution in order to give sharp focus over a small area means that our ability to detect things we should know about in our field of vision is compromised. Acute vision works very well, and it works most of the time, but it sometimes fails to detect things because of its low resolution. This type of trade-off would not surprise an engineer, but for some reason we expect our brains to work perfectly.

More importantly, our brain hides saccades from us. If you look in a mirror, focus on one eye, then the other. You will see your eyes looking at one, then the other, but you will not see your eyes shift in the saccade between stares [6]. This is another example of how the brain hides a lot of messiness from us in order to give us what might be called an illusion of wholeness, a false sense of coherence, or an illusion of well-being. Much of the way we perceive and think is hidden from us. Put another way, we do not think the way we think we think. Our impressions about our thought processes are comfortingly simple and affirming. This generally is good, but it makes us blind to our cognitive limitations and causes us to be overly confident in our cognitive processes.

3.2 How the Brain Thinks

How does the brain use its rather messy cognitive mechanisms to think? We do not know in detail. However, cognitive research, especially cognitive psychology, has given us insights into how the brain appears to work.

Our ideas about how the brain works have changed greatly over history. Aristotle, for example, believed that the purpose of the brain was to cool the blood. This may seem strange, but remember that Greek technology used hydraulics, so it was easy to assume that that the brain worked that way. The heart pumped to blood, so it was logical that it was the center of thought. The brain’s gray matter appeared to have no structure other than places for blood to flow. (Neurons have not been observable until very recently).

Today, we know that the brain’s only purpose is not to cool the brain, at least for most people. However, we tend to make a similar analogy. Ours is an era of digital computers, so we expect our brains to act somehow as digital computers. One consequence is that expect our brain to work reliably like digital computers. However, although neurons communicate through on/off signaling, there is no indication that neural networks are otherwise binary in their operation. In fact, such things as the probabilistic nature of neuron firing suggest that the brain is what it looks like—some sort of analog device. Good analog devices work very well, but they do not always work perfectly. With analog devices, the same mechanisms that allow a device to perform well most of the time also inevitably produce occasional failures. While the failure rate can be reduced afterward, it is expensive to do so, and each increment in error reduction has increasingly cost.

3.3 Two Systems of Cognition

A common them of current cognitive science is that we have two basic modes of thinking. In his book, Thinking, Fast and Slow, Kahneman [18] has given a widely read and extensive discussion of this concept. He refers to these two modes of thinking as System 1 and System 2—terminology that was created by Stanovich and West [40]. System 1 is very fast, while System 2 is very slow, hence the title of Kahneman’s book. This dichotomy also has older roots. Baars [3,5] expressed the same general concept in his Global Workspace Theory, which was created to explain errors and correct performance in speech. Reason [38,39] focused on performance-and-errors in his Generic Error-Modelling System (GEMS). Reason called fast System 1 thinking our schematic system and the slow System 2 thinking our attentional system. For reasons that will be apparent, we will call fast System 1 thinking automatic mode (AUM) thinking and slow System 2 thinking as attentional mode (ATM) thinking.

3.31 Fast Automatic Mode (AUM) Thinking. You are walking on a sidewalk. Someone with a dog is coming in your direction. The dog’s ears turn back, and its tail retracts under its rear legs. You begin to walk off the sidewalk, away from the dog. Then, the owner pulls the dog away from you, placing herself between you and the dog. You stay on the sidewalk but walk warily past the dog and its owner.

This is classical automatic mode thinking. It is automatic in the sense that you did nothing to begin assessing the situation. Your AUM system automatically recognized the signs of an unfriendly dog, and it inferred that the dog had the intention of harming you. It automatically urged you move off the sidewalk to protect yourself. It also automatically recognized that the owner’s actions would probably leave you safe but still automatically urged you to walk warily, keeping an eye on the dog.

Note that automatic mode thinking is almost instantaneous. Recognizing the signs of danger and urging a safe action are not simple things. They probably require considerable brain processing, yet they occur with no obvious time delay. This is indeed thinking fast.

AUM thinking is also effortless. You do it constantly, but it does not seem to tire you out. You can go out for a stroll and let you mind wander. You may not remember any details from your walk, but you will arrive safely nearly all of the time without thinking actively about how you got where you wanted to go.

Not quite as obviously, automatic mode thinking is confident. There was no sense of hesitation in the conclusion about the dog’s intention or how to act. Perhaps overconfidence is not the correct word because it implies arrogance. This is not arrogance. Second guessing is simply not a feature of automatic mode thinking.

Reason [39] called automatic mode thinking schematic because it recognizes schemas (patterns) in the world around it. You have many schemas that help you organize your world. One schema may be “approaching dog.” Your brain categorizes your current situation as reflecting this schema. The schema suggests things to look for in the dog and what to do if certain patterns emerge in the dog’s behavior. Other writers use different terminology, but all suggest that this type of thinking involves patterns of interaction among neurons and that this associative thinking is situation specific.

Kahneman [18] has argued that AUM thinking is the mechanism of expertise. Chess masters look at chess boards and immediately see strategic and tactical patters that suggest logical next moves. Expertise often shows the nearly immediate performance characteristic of schematic thinking. To a lesser extent, this is also true among people who are proficient but not experts.

Linguists have long studied automatic mode thinking by observing mistakes that people make when they speak [2,4]. Other have researchers have studied automatic mode thinking in other fields by looking at failure in their domains. The result has been a model of automatic cognition called competing plans [4,21]. As we consider something to say, our brain apparently produces many sentence pieces and gradually builds them into sentences, selecting among competing sentences. This thinking is very complex, and when we err, we tend to give evidence of how thinking is done. Consider Spoonerisms, such as “That is a lirty die.” The change is not random; the two initial sounds of the words are switched. Other linguistic errors are similarly “lawful.” Linguists have created many ways to induce speech errors. These methods include rushing the speaker, such as rushing the speaker (even AUM takes some time) priming the speaker with a word that will tend to generate an error in sentence construction, and several others [4].

In addition, automatic mode thinking must consider a great deal of context. When we write a word in an essay, we must consider the surrounding words in the sentence (including number and case), our plan for the paragraph, our plan for the current section, and our plan for the entire essay [13]. This is integrative complexity, in which each part depends on other parts. Figure 2, based on Flower and Hayes reasoning, illustrates the load that context places when we write individual sentence. This load can overwhelm AUM thinking. If the brain loses any of the context is lost, errors are likely. No one of any sense believes that they can write a document of any size without making grammatical errors.

Figure 2: Integrative Complexity in Single Actions
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3.32 Slow Attentional Mode (ATM) Thinking. Kahneman [18] discusses the following mathematical problem:

A baseball and bat cost $1.10.

The bat costs a dollar more than the ball.

How much does the ball cost?

For many people, the answer that comes to mind immediately is that the ball costs ten cents. The automaticity, speed, effortless, and confidence of the solution indicate automatic mode thinking.

However, some people test that initial answer. If the ball is ten cents, does the bat cost a dollar more than the ball? If the bat costs a dollar cents and the ball costs ten cents, then the difference is ninety cents, not a dollar. This is attentional mode (ATM) thinking at work. In contrast to automatic mode thinking, the thinker must “turn on” attentional mode thinking, hence its name. ATM thinking then considers automatic mode urgings as suggestions at things to be tested before being accepted. However, if the person does not choose to activate attentional mode thinking (turns his or her attention on it), then the automatic mode suggestion becomes a belief to act upon.

In addition to testing automatic mode suggestions, Kahneman [18] argues that attentional mode thinking, which he calls System 2, can also compute find a correct answer. For example, calling the ball price X and the bat price Y, then the problem can be restated as Y+X=1.10, Y-X=1, and solve for X. Kahneman considers oversight and solution to be aspects of the same system because they are slow and non-automatic. We will focus on the oversight role in this paper.

3.3.3 Interactions between Thinking Modes. Figure 3 illustrates interactions between the automatic and intentional modes of thinking. We have already seen oversight, in which attentional mode thinking accepts or rejects automatic mode suggestions. However, this is only the beginning.

In addition, the AUM can urge the ATM to direct attention to something. For example, the automatic mode might tell the attentional mode to look for potholes in a road that appears to be poorly kept. More simply, a loud sound will cause us to orient our attentional mode to whatever made the sound. Essentially, AUM thinking can sound alarms or helpful suggestions for things to bring to our attention.

Figure 3: Interactions among Modes
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Source: Panko [31].
In the other direction, attentional mode can direct the automatic mode to look for indications of the face of a friend in a crowd. In this way, the attentional mode can fundamentally change what the attentional mode does.

Looking for a face in a crowd requires interactions with the environment. Neisser [26] noted that the environment can direct our attention to aspects of it and that the attentional mode (he did not use that term) can direct attention to certain aspects of the environment.

3.4 Problems.
Automatic mode thinking and attentional mode thinking are very powerful. However, both have problems that can lead to errors. This is why we are considering them in this paper.
3.41 Problems with Automatic Mode. Automatic mode thinking is about pattern matching. Existing patterns do not always fit a situation, and in these cases, AUM suggestions may be wrong. The owner might pull the dog away, but the dog may still pull free and bite you. The bat and ball question seem to fit a strong pattern leading to the ten cent price for the ball, but this pattern is the wrong one.

Another problem is what Reason [39] calls “frequency gambling.” If the situation does not precisely fit a pattern, or if we are distracted, automatic mode thinking seems to select patterns based on the frequency at which they occur. This works most of the time but can lead to what Reason [39] called “strong but wrong” errors. If we are driving home from work as usual but want to stop at the store this time, we are very likely to drive right past the store unless we keep the plan in mind.

More specifically, we appear to be largely oblivious to infrequent patterns [8]. On most roads, motorcycles are comparatively rare. Many motorcycle accidents involve a car pulling out into a road and hitting a motorcycle the automobile driver does not see. In many cases, the driver looked at the motorcycle but did not see it [8]. Just as our vision is limited, as noted earlier, our attention is also limited. This is another example of our brain hiding limitations from us. If we do not hit an unseen motorcycle, we have no indication that we had not seen it. Since we do not experience the error in thinking, our confidence in our thinking does not decrease.

Kahneman [18] notes that if a question is too difficult, attentional mode tends to give up and instead tries to answer a similar but simpler question it is capable of answering [18]. For example, suppose you are asked how much you would pay to save a puppy. That is a complex question to address properly. However, your brain may switch to a simpler question: “How much do I like this puppy.” The automatic mode then uses the intensity of liking the puppy as a surrogate the intensity of our response to the question of how much you would pay to save the puppy. Automatic mode transfers intensities across questions easily [18].

3.42 Problems with Attentional Mode Thinking. By itself, automatic mode thinking is probably wrong a great deal. Oversight by attentional mode thinking is necessary to reduce the likelihood of errors. Unfortunately, attentional mode is very difficult to maintain. When we engage in attentional mode thinking, our pupils dilate, our blood pressure rises, and our brain uses up more glucose [18]. We literally “pay” attention [18]. As studies of vigilance have shown, our ability to maintain oversight is limited. When we do not maintain oversight, however, strong but wrong and other automatic mode thinking errors slip through.

While automatic mode is effortless, the cost of attentional mode is high. Given that attentional mode must be turned on, we may not turn on attentional mode thinking if the cost is high. Of course, we cannot possibly question everything automatic mode thinking suggests or we would go insane. How much to use attentional mode for oversight is a decision that everyone makes constantly, and there is no perfect answer. Consequently, it is inevitable that some automatic mode errors will get through. In addition, even if attentional mode oversight is turned on, there is no guarantee that it will detect a problem with an automatic mode suggestion.

3.5 Perspective
Under normal circumstances, automatic mode thinking and attentional mode thinking work well. I can go out for a stroll, let my mind wander a great deal, and almost always get where I am going. Occasionally, this benign result will not occur. For example, I might stumble over a curve or walk into the path of a car. However, it will work nearly of the time. This means that we will have correct performance nearly all the time but will also have a small error rate. It would be illogical not to expect to expect this pattern in spreadsheet development. The data shown earlier in this paper certainly supports its applicability to spreadsheets.

When most of us build a spreadsheet (or write a program), we are fairly confident in the correctness of our work. At least part of this confidence stems from the fact that the messiness of our cognitive functions is systematically hidden from us by these same cognitive functions. Most people are surprised by the number of errors that are found when a spreadsheet they built is inspected rigorously. Perversely, when we do find an error as we work, this increases our confidence that our work is correct because we are obviously clever at finding errors [42]. The “bottom line” is that if a spreadsheet creator is confident in the correctness of a model he or she has built, this should not be taken as a good indication of the model’s correctness.

4. Conclusion
It has long been known that error is a serious problem with spreadsheets. This paper helps explain why. First, human error research has long shown that when people engage in nontrivial but simple cognitive activities such as writing a line of software code, there error rate is usually about 1% to 10% (see Table 3). Second, inspections of operational spreadsheets and spreadsheet development frameworks confirm that spreadsheet cell error rates are in exactly that range (see Table 1 and Table 2). Many spreadsheets are very large, with hundreds or thousands of chained calculations. Given CERs of a few percent, it is irrational to expect large error-free spreadsheets (see Figure 1). Certainly, the expectation would not be based on quantitative data.

The paper offers a discussion of why we make errors as we work. Most fundamentally, there is no evidence that humans are binary machines that have the error-resistant nature of digital processing. As Norman [27] has put it, we are analog machines that excel in such areas as being compliant to environmental changes, flexible in how we approach situations, and tolerant of ambiguity and errors. The rest of the paper showed what we know of human cognitive processes and why they are inherently slightly flawed. Most fundamentally, the limits of human “wetware” have caused us to evolve in ways that give the most resources to the things we do frequently, robbing some resources from infrequent activities. In other words, our cognitive system gambles. In addition, our attentional system, which is designed to check for errors, does not operate all the time. Nor can it, given its limitations. Our cognitive system is amazing, but it does not allow perfection in long chains of actions, including calculations. Hopefully, knowledge of why we air will do much to lead us to actions that reduce errors considerably.

Another key facet of our cognitive system is that it tends to lead to error blindness. Our vision and other cognitive systems are rather messy, but they hide this messiness from us, giving us the comforting belief that everything is going well in our heads and in the world. We are driven primarily by automatic mode thinking which is not overconfident but simply blind to the idea that its suggestions may be incorrect. Particularly when implementing our attentional system to an extensive degree is before us, people tend to accept the confidence in correctness that automatic mode thinking inherently provides. Put more simply, if a spreadsheet developer is confident about a spreadsheet’s accuracy, this confidence is meaningless.

The paper did not go into how to test spreadsheets in order to reduce errors. In software development, we saw that inspection after unit development usually finds errors in 2% to 4% of all lines of code. However, in software development, most errors found in unit testing are fixed. In addition, a program will go through several rounds of testing as its parts are integrated. Consequently, the error rate in finished commercial spreadsheets typically is 0.1% to 0.3% [37]. However, surveys have shown universally that spreadsheet testing is either nonexistent or a pale analog of professional testing in software development, which has similar error rates and even types of errors. This is likely to be why error rates in spreadsheet development experiments (which are like unit testing) are barely higher than error rates in inspections of operational spreadsheets, which are done at the end of a spreadsheet’s life. Follow on research will examine what human error research can tell us about how to test spreadsheets and why human error detection rates are far lower than human development error rates.

Given the fact that most spreadsheet developers are working only with untested experience, we should be wary of claims about a particular method reducing errors greatly or even eliminating them (which human error research has proven to be an impossible goal.) In human error research, there have been many examples of how testing has dispelled common beliefs about how to achieve accuracy across a wide variety of conditions. To give just one example, computerized medical records have long been touted as a way to reduce the error rates found in paper records. One large study was done to test the efficacy of going to electronic records to reduce errors. It found no difference in error rates between paper and electronic medical records. While many developers are confident that their prescriptions for reducing errors are highly effective, this confidence is meaningless.
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